If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+12x+7x=0
We add all the numbers together, and all the variables
2x^2+19x=0
a = 2; b = 19; c = 0;
Δ = b2-4ac
Δ = 192-4·2·0
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-19}{2*2}=\frac{-38}{4} =-9+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+19}{2*2}=\frac{0}{4} =0 $
| 3=2f+15 | | X+(x+5)+2x=23 | | 2p2-11=61 | | C=2/3d | | .7x=10.000 | | 8(2^x+4)=128 | | -8/9b=-8 | | 4(7m+196)=392 | | 4-4x4+8=0 | | -4=4+8x4 | | A^2-16a^2+96=0 | | -8+x=2x+2 | | 14+2x=7x(3x-6) | | X^3-16x^2+16x-256=0 | | 90000=x*1.3 | | (3+0.7x)/10=0.5 | | 6a^2=48a | | (x-1)(x+1)(x-1)(x+1)(x-1)(x+1)(x-1)(x+1)(x-1)(x+1)(x-1)(x+1)=0 | | a-2/3=2.4/1.2 | | X+.20x=84 | | 1/3x+2/x=7/12 | | 8x-125x^-2=0 | | 9+6d=16 | | V9+6d=16 | | 8x-125x^-3=0 | | -125x^-3+8x=0 | | x+x(18/100)-11800=0 | | 6-3y=y-14 | | 4^t-1=3 | | 4^(t-1)=3 | | 18x+6-12x-6=2x-10=6x-6 | | x+2=5x-20 |